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Abstract. Isolated hydrogen and muonium in crystalline silicon have been studied by the
path-integral Monte Carlo method, using a parametrized Si–H interaction derived from earlier
ab initio calculations. Hydrogen and deuterium are found to be stable at the bond-centre (BC)
site, but this position is metastable for muonium. Average values of the kinetic and potential
energy of the defects are compared with those expected for the hydrogen-like impurities within
a harmonic approximation. The backwards relaxation of the Si-atom nearest neighbours of the
impurity is found to be dependent on the impurity mass (higher host-atom relaxation for higher
impurity mass).

1. Introduction

Isolated hydrogen and muonium in crystalline semiconductors have been widely studied in
the last decade, by both experimental and theoretical methods. The interactions involving
hydrogen are diverse and can affect the macroscopic properties of semiconductors. As an
example, it is well known that almost 100% of boron acceptors can be passivated in Si at
room temperature, with the consequent increase in the resistivity of the material by several
orders of magnitude. Different reviews on this subject have been published in past years
[1–4].

It is now generally accepted that the lowest-energy site for isolated hydrogen-like
impurities in crystalline silicon is the bond-centre (BC) site, midway between two adjacent Si
atoms. Electron paramagnetic resonance experiments have shown the presence of hydrogen
in the so-called AA9 defect [5, 6], with axial symmetry around the [111] crystal axis, as
expected for a BC site. Several theoretical studies [7–10] have found that this position is
the equilibrium site for hydrogen in silicon, with a backwards relaxation of the nearest Si
atoms of about 0.4̊A.

Muonium may be considered as a light pseudoisotope of hydrogen, since the mass
of the muonµ+ is about 1/9 that of the proton. In fact, this property has been used to
extrapolate various characteristics of muonium in semiconductors to the case of hydrogen,
which is difficult to observe as an isolated impurity in these materials [11–13]. However,
the difference in mass between a proton and muon can be enough to make the BC site (the
lowest-energy position for hydrogen) a metastable site for muonium, as a consequence of
the high zero-point energy of this impurity at a BC site (about three times larger than that
of hydrogen). In this line, it has been shown that muonium can display a behaviour distinct
from that of hydrogen in silicon due to such quantum effects [14].
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Hydrogen diffusion in silicon has been studied by molecular dynamics simulations [15–
17], which have given diffusion coefficients that compare well with experiment. However, in
these methods the atomic nuclei are treated as classical particles and typical quantum effects
like zero-point vibrations are not directly accessible. These effects can be important for light
impurities like hydrogen, and even more so for muonium, especially at low temperatures.

In this paper, we study mass-dependent properties of hydrogen-like impurities (H,
deuterium (D), and muonium (the so-called anomalous muonium or Mu∗ centre)) at the
BC site of crystalline silicon by the Feynman path-integral Monte Carlo (PIMC) method.
This procedure provides a powerful approach for studying finite-temperature properties of
quantum systems [18–20]. In this work, we calculate the average kinetic and potential
energy of a supercell Si64I (I = impurity, H, D or Mu∗), as well as the isotope effect on
the host-atom relaxation. Finally, the density distribution for the impurities at the BC site
is also analysed.

2. The method of calculation

The path-integral approach in statistical physics is based on the formal equivalence between
the canonical density matrix and the time evolution operator for a quantum system [18]. In
particular, if our system ofP + 1 quantum particles (P silicon nuclei and one impurity) is
described by the hamiltonianH , the partition functionZ at temperatureT is given by

Z = Tr
[
exp(−βH)

]
(1)

whereβ = 1/(kBT ) andkB is Boltzmann’s constant.Z can be expressed as a path integral
in the following way [18]:

Z =
∫

exp

[
−1

h̄

∫ βh̄

0
8[R(u)] du

]
DR(u) (2)

where u is a parameter with dimensions of time, andR is a vector in a 3(P + 1)-
dimensional space, the components of which are the Cartesian coordinates of the nuclei,
R = (r1, . . . , rP+1). The pathsR(u) satisfy the cyclic conditionR(0) = R(βh̄), and the
functional8[R(u)] is given by

8[R(u)] = 1

2

P+1∑
p=1

mpṙ2
p(u) + V [R(u)] (3)

where mp is the mass of nucleusp, and ṙp the derivative ofrp with respect to the
‘time’ coordinateu. Since our calculations are performed within the Born–Oppenheimer
approximation, we employ a potential energy surfaceV (R) for the nuclei coordinates, as
described below.

The path integral in equation (2) can be evaluated by a discretization of the cyclic paths
R(u) into N points (R1, R2, . . . ,RN ). For sufficiently largeN , Z can be approximated
within the high-temperature approximation by a free-particle propagator, leading to the
expression

ZN = C

∫
dR1 . . . dRN exp(−βVeff) (4)

where the integral is extended to the whole coordinate space of 3(P + 1) dimensions, and
the constantC is given by

C =
(

mI

mSi

)3N/2(
NmSi

2πβh̄2

)3(P+1)N/2

. (5)
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ZN is formally identical to the partition function for a classical system ofP + 1 cyclic
‘chains’, interacting via an effective potential

Veff(R1, . . . ,RN) =
N∑

j=1

[
A(Rj , Rj+1) + 1

N
V (Rj )

]
(6)

where

A(Rj , Rj+1) = N

2β2h̄2

[
mI(rP+1,j+1 − rP+1,j )

2 +
P∑

p=1

mSi(rp,j+1 − rpj )
2

]
. (7)

The indexp refers to the particle, and goes from 1 toP for the silicon atoms, and values
P + 1 for the impurity. The indexj indicates the ‘time’ coordinate along the path;mSi

and mI are the mass of the host atoms and the impurity, respectively, andV represents
the potential energy part of the Hamiltonian. In equation (6) one hasRN+1 = R1, as a
consequence of the cyclic character of the paths in equation (2). Thus, in this discretization
of the path integral, the quantum paths of a nucleus are described by cyclic chains divided
into N ‘time-slices’, and within a given path, the nucleusp at time-slicej is harmonically
coupled to itsj + 1 andj − 1 images with spring constantNmp/(βh̄)2 (see equation (7)).
On the other hand, the interaction potentialV (Rj ) in equation (6) is ‘instantaneous’, in
the sense that it is restricted to particle images sharing the same ‘time’ coordinatej . This
approximation for the partition functionZ becomes exact in the limit of largeN :

Z = lim
N→∞

ZN. (8)

It will be interesting in the discussion below to compare the behaviour of the quantum
impurities studied with that of a ‘classical’ impurity suffering the same interaction potential,
and following classical statistical mechanics. This classical limit with the potentialV (R)

is obtained by puttingN = 1 in the partition function of equation (4). In this case,
A(Rj , Rj+1) = 0, and each quantum path collapses into a single point in the configuration
space.

In this context, the average kinetic energy of particlep at temperatureT is given by
[20]

〈Kp〉 = 3

2
NkBT − Nmp

2β2h̄2

N∑
j=1

〈(rp,j+1 − rpj )
2〉. (9)

The single-particle densitynp(r), defined as the probability density for finding the nucleus
p at positionr is obtained asN−1 times the probability density for finding any of theN
images of nucleusp at r [20]. More details on the PIMC method can be found elsewhere
[18, 20, 21].

The Si–Si interaction has been modelled by the Stillinger–Weber potential [22], that
gives results for crystalline silicon (total energy, quantum delocalization of the Si atoms) in
good agreement with those derived from experiment [23–25]. The Si–H interaction has been
described by a three-body potential developed to reproduce the energy surface obtained by
Van de Walleet al [7] for H+, which is thought to be the stable state of H in undoped and
p-type silicon [7, 26, 27]. The actual form of our parametrized potential is given elsewhere
[28].

The partition functionZN in equation (4) has been sampled by the Metropolis method
[29, 30]. We employ a 2× 2 × 2 supercell of the Si face-centred cubic cell with periodic
boundary conditions. It contains 64 Si atoms and one impurity, and the simulation cell
parameter amounts to 10.86Å. A simulation run proceeds via successive MC steps (MCS).
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In each MCS, the path coordinates of the nuclei are updated according to two different
kinds of sampling scheme. In the first one, attempts to move are carried out sequentially
for each nucleus at every time-slice. The second one is a random move of the centre of
gravity (CG) of the cyclic path associated with each particle, leaving unaltered the shape of
each individual path (translation of the path). At each temperature studied, the maximum
distance allowed for random moves was fixed to obtain an acceptance ratio of about 50%
for each kind of sampling. At 50 K, the maximum allowed impurity displacements in a
MCS amount to 0.10Å, 0.14 Å, and 0.24Å for moves of individual path coordinates
of deuterium, hydrogen and muonium, respectively. For moves of the CG, we obtain
nearly the same value for the three impurities (∼0.06 Å at 50 K). At each temperature, we
generated 2× 105 paths per atom for the calculation of ensemble average properties, and
6× 104 paths per atom for system equilibration. To keep the numerical error caused by the
discretization of the integrals lower than 1 meV per atom, we have taken for the product
NT the values 2000 K for Si, 10 000 K for H and D, and 30 000 K for muonium. Thus,
at T = 50 K, the cyclic paths include 40 time-slices for Si, 200 for H and D, and 600 for
muonium. The number of time-slicesN employed in the MC simulations decreases as 1/T

as temperature increases, to keep the same precision in the energy〈E〉. Since in equation (4)
the same numberN appears for Si and impurity nuclei, in the actual MC simulations every
consecutiven (=NI/NSi) time-slices for the impurity correspond ton time-slices of Si, that
collapse into a single one.

3. Results of the simulations

With our parametrized Si–H potential, the BC site is the absolute energy minimum with a
backwards relaxation of the nearest-neighbour Si atoms of 0.3Å. In this minimum-energy
configuration, we find a potential energy of –1.39 eV with respect to the pure host supercell.
This energy can be separated into Si–Si and Si–H interactions, and we obtain a Si–H energy
V (Si–H) = –2.83 eV, along with a relaxation energy of the lattice1V (Si–Si) = 1.44 eV.
The energy surface for hydrogen in silicon so obtained reproduces closely the main features
of that found by Van de Walle and co-workers from pseudopotential density functional
calculations [7]. By keeping the Si atoms fixed at their fully relaxed positions (for the
impurity at BC), we find at the energy minimum a force constantk‖ = 18.42 eVÅ−2 for
impurity motion along the axis, andk⊥ = 3.50 eVÅ−2 for vibrations perpendicular to the
[111] direction. These values translate for hydrogen intoω‖ = 2230 cm−1 and ω⊥ = 972
cm−1. For the potential employed here, we do not find any difference between displacements
along different directions perpendicular to [111], e.g., [11̄0] and [11̄2]. The energy curve
along the bond is highly anharmonic, as a consequence of the constraints suffered by the
impurity at the BC site [28].

We define the average defect energy〈EI〉 at a given temperatureT as the difference
between the total energy of the supercell,〈E(Si64I)〉 (I = H, D or muonium), and that of the
silicon supercell without the impurity at the same temperature,〈E(Si64)〉. In the following,
we will take as zero defect energy the classical limit atT = 0, i.e.

〈EI〉 = 〈E(Si64I)〉 − 〈E(Si64)〉 − ECl
I (T = 0) (10)

whereECl
I (T = 0) = ECl

I (Si64I)−ECl
I (Si64) = −1.39 eV is obtained when one considers the

atomic nuclei (both of the impurity and silicon) as classical particles atT = 0. In figure 1
we present the defect energy versus the temperature from 0 to 400 K. Open symbols indicate
results of our PIMC simulations for deuterium (circles), hydrogen (squares), and muonium
(triangles). For the latter impurity, we show only results up to 100 K, since muonium is not
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Figure 1. The temperature dependence of the defect energy for bond-centred impurities, as
obtained from path-integral Monte Carlo simulations for deuterium (open circles), hydrogen
(squares) and anomalous muonium (triangles). The dotted lines correspond to three-dimensional
harmonic oscillators with force constantsk‖ = 18.42 eVÅ−2 and k⊥ = 3.50 eV Å−2. The
dashed line represents the average thermal energy of a 3D classical harmonic oscillator:〈E〉 =
3kBT .

confined by our potential at the BC site for higher temperatures [14]. As expected, zero-
point effects due to the finite mass of the impurities cause an increase in the defect energy,
which is higher for lower impurity mass. Up to 400 K, hydrogen and deuterium are found
to be located around the BC site, which is the equilibrium position for a classical particle.
The dotted lines in figure 1 were obtained in a one-particle harmonic approximation (HA)
with masses corresponding to the different impurities. In this approximation, one has

EHA
I = 1

2
h̄

3∑
i=1

ωi coth

(
h̄ωi

2kBT

)
(11)

where theωi correspond to the vibrational frequencies (ω‖ and ω⊥) obtained for each
impurity at the BC site. In this approximation atT = 0, the defect energies corresponding
to deuterium, hydrogen, and muonium scale roughly as 1:

√
2:3

√
2. The dashed line in

figure 1 corresponds to the average energy of a classical three-dimensional (3D) harmonic
oscillator, which increases linearly with temperature, and does not depend on the oscillator
mass:〈E〉 = 3kBT . For hydrogen and deuterium we find a tendency of the defect energy
(squares and circles) to be slightly higher than that corresponding to the HA (dotted lines).
For muonium, however, this tendency is much clearer, since this impurity is lighter (more
delocalized) and feels stronger the anharmonicity of the interaction potential. In fact, we
obtain in this case from the PIMC simulations a defect energy about 85 meV higher than
that found in the HA. This increase is mainly due to the change in the kinetic energy of the
impurity, which increases as a consequence of the constraints suffered by the particle in the
[111] axis (bond direction). This is clearly seen in figure 2, where we plot the kinetic energy
of the impurity at 50 K versus 1/

√
mI . Open squares represent the kinetic energy obtained

from the MC simulations, which are compared with the results found for the one-particle
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HA with the frequenciesωi (i = 1, 2, 3) derived from the force constantsk‖ andk⊥ given
above (continuous line). The classical limit corresponds to infinite impurity mass, and gives
〈KI〉 = 6.5 meV.

Figure 2. The kinetic energy of hydrogen-like impurities at 50 K, as a function of the inverse
square root of the impurity mass. Open squares represent data obtained from PIMC simulations.
The full line corresponds to a one-particle harmonic approximation with the force constantsk‖
andk⊥ given in the text. The dashed line is a guide to the eye.

An important consequence of the impurity delocalization is that the average interaction
energy between the host atoms and the impurity will change as a function of the impurity
mass. One expects that muonium will be more delocalized than hydrogen and deuterium, and
thus it will explore points of the configuration space with energyV (Si–I) higher (impurity
less bound) than that corresponding to a classical particle at the BC site. This is in fact
obtained from our PIMC simulations, as shown in figure 3. We find a linear dependence of
this binding energy versus 1/

√
mI . For H, the potential energy of the Si–I–Si three-centre

bond is about 0.2 eV higher than for a classical particle, and about 0.4 eV lower than for
the Mu∗ centre.

Taking into account that the presence of the impurity at the BC site is associated with a
strong backwards relaxation of the nearest Si atoms, one expects that the more confined the
impurity around the bond-centre site, the higher will be the lattice relaxation energy. This
means that for increasing impurity delocalization (lower mass), the lattice relaxation energy
will decrease. This is shown in figure 4, where we plot the energy1V (Si–Si) obtained from
our Monte Carlo simulations, versusm

−1/2
I . We find again a linear correlation between these

variables. Changes of1V (Si–Si) as a function of the impurity mass are not negligible. For
hydrogen, we find that this energy is 55 meV lower than that corresponding to a classical
particle, and 108 meV higher than for anomalous muonium. Note that due to the quantum
delocalization ofµ+ around the BC site, the lattice relaxation energy decreases from 1.42
eV (classical particle at 50 K) to 1.26 eV, i.e., this energy changes by about 11%. The
change in lattice relaxation around the impurity can be also quantified by the distanced(Si–
Si) between average positions of the nearest host atoms. In figure 5, we display this distance
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Figure 3. The interaction energyV (Si–I) versus
m

−1/2
I . Open squares are data points derived

from PIMC simulations at 50 K.

Figure 4. The lattice relaxation energy versusm
−1/2
I

at T = 50 K. Open squares indicate the results of the
PIMC simulations.

Figure 5. The average distance between Si-atom
nearest neighbours of the impurity, as a function of the
inverse square root of the impurity mass, as obtained
from the PIMC simulations. The dashed line is a least-
squares fit to the data points.

at T = 50 K as a function of the inverse square root of the mass impurity. As a result, the
distanced(Si–Si) decreases by about 0.05Å when going from a classical particle (limit of
infinite mass) to bond-centred muonium.

It is interesting to compare the delocalization of the different hydrogen-like impurities at
low temperatures (almost ground state). Since our Si–H potential displays axial symmetry
around the [111] crystal axis, the probability density function for the impurity will show
the same cylindrical symmetry around the Si–Si axis. In figure 6 we plot the integrated
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Figure 6. The probability density for the distance of
the impurity to the Si–Si axis at 50 K. The continuous
line is for Mu∗, the dashed line for H, and the dotted
line for D.

Figure 7. The probability density for the Si–I–Si angle
(I = impurity) at 50 K. The continuous line is for Mu∗,
the dashed line for H, and the dotted line for D.

impurity density versus the distanceρ to the Si–Si axis atT = 50 K. The maximum of these
distribution functions moves towards higher distances as the impurity mass decreases. We
find these maxima atρm = 0.120, 0.145 and 0.314̊A, for H, D and muonium, respectively.
These values are in a ratio 1:1.21:2.62, to be compared with the ratio expected for a harmonic
approximation, i.e., 1:1.19:1.73 (ρm proportional tom−1/4

I , since for a harmonic oscillator the
ground-state delocalization(1r)2 scales as 1/

√
mI ). Hydrogen and deuterium follow closely

the harmonic ratio, but the ratio between muonium and hydrogen (or deuterium) departs
considerably from the value expected for the HA. This result agrees with the observation
made above that muonium feels the anharmonicity of the interatomic potential more strongly
than hydrogen and deuterium. Note that the most probable site for the impurities is the bond
centre, exactly between the nearest Si atoms, which corresponds toρ = 0 in figure 6. The
curves shown is this figure show off-BC maxima because they correspond to an integration
of the volume density weighted by 2πρ, as obtained from the PIMC simulations.

A complementary picture of the actual defect configuration can be obtained by looking
at the distribution of the instantaneous Si–I–Si angle for the different impurities. This angle
distribution is shown in figure 7 at a temperature of 50 K, for which the most probable
angles are 171◦, 169◦ and 155◦ for D, H and muonium, respectively. It is interesting to
see the influence of the potential anharmonicity and the coupling between host-atom and
impurity vibrations on the density distribution for the impurity, in particular for the case of
Mu∗, where the differences with respect to the one-particle HA will be greater. Thus, in
figure 8 we present the Si–I–Si angle distribution corresponding to the Mu∗ centre in the
HA (dashed line), with the Si atoms fixed at their relaxed positions for the absolute energy
minimum (d(Si–Si) = 2.948Å). This distribution is plotted as a dashed line, and is to be
compared with that obtained in the PIMC simulations for this centre (continuous line). It
is clear that the one-particle HA predicts a density distribution narrower than that found in
the MC simulations. At this point, one can argue that the actual Mu∗ centre could be better
described by a kind of quasiharmonic approximation (QHA), in which the Si–Si distance
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Figure 8. The probability density for the Si–I–Si angle (I= impurity) for anomalous
muonium atT = 50 K. Continuous line: PIMC simulation: dashed line: one-particle harmonic
approximation withk‖ andk⊥ given in the text; dotted line: quasiharmonic approximation for
a distanced(Si–Si) = 2.899Å.

should be that obtained in the PIMC simulation of this centre (namely,d(Si–Si) = 2.899Å
at 50 K), with the frequenciesω‖ and ω⊥ calculated for this host-atom configuration. In
fact, such a QHA gives a Si–I–Si angle distribution (the dotted line in figure 8) closer to the
MC results, but is still far from giving a good agreement with the path-integral simulations.

4. Discussion

An important consequence of the anharmonicity of the interatomic potential is the
dependence on the impurity mass of several quantities that are constant in a harmonic
approximation. That is, in a HA the average positions of the atomic nuclei (host and guest)
remain constant, irrespective of the temperature and impurity mass. From the results of our
PIMC simulations, one can quantify the influence of the anharmonicities upon the average
atom positions. Thus, in a HA one expects that the distanced(Si–Si) between host-atom
nearest neighbours of the impurity will be independent of the impurity mass. The results
shown in figure 5 indicate that this distance decreases appreciably when one goes from
deuterium to muonium. If one compares the values of this distance corresponding to the
different hydrogen-like impurities with that obtained for the minimum-energy configuration
(classical particle atT = 0, d = 2.948 Å), one finds changes of−0.015, −0.019, and
−0.049 Å, for D, H and muonium, respectively. For comparison, we note that for a
‘classical’ hydrogen-like particle, we obtain at 50 K a change of –4×10−3 Å, indicating
that it feels the potential anharmonicity much less than the actual quantum impurities.
Taking into account that the backwards relaxation of the nearest silicon atoms obtained here
for the minimum-energy configuration is1d = 0.298Å per Si atom, we find a reduction
of the nearest-neighbour relaxation of about 8% for the case of Mu∗. The change in the
relaxation of nearest neighbours is especially important for muonium, and indicates that
the large delocalization of this light impurity, with the concomitant feeling of the potential
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surface anharmonicity, cannot be neglected if one is to give a precise characterization of
these point defects. It is worth comparing these distances with the spatial delocalization
of Si nuclei in their ground state, with values(1r)2 ∼ 7 ×10−3 Å2, as derived from the
vibrational density of states obtained from neutron diffraction experiments [23, 25]. This
translates into1x ∼ 0.05 Å, and thus changes in the average position of the nearest silicon
atoms, due to the anharmonicity of the Si–I interaction potential, are of the order of their
zero-point delocalization.

As shown in figure 1, the defect energy for anomalous muonium Mu∗ departs appreciably
from that expected for a pure HA. The increase in the total defect energy with respect to
the one-particle HA is found to be 85 meV, from which 51 meV are associated with an
increase in the kinetic energy of the impurity (see figure 2). The remaining difference comes
from the change of the potential energy of the defect, which results from the competition
between an increase inV (Si–I) (see figure 3) and a decrease in the lattice relaxation energy
(figure 4). As a result, the potential energy is 34 meV higher than that corresponding to the
one-particle HA.

Figure 9. The mean distance from the impurity to the Si–Si axis, as a function of the
distance between nearest Si atoms. Open squares: PIMC simulations at 50 K; dotted line, the
quasiharmonic approximation, as described in the text. An arrow indicates the Si–Si distance
corresponding to the absolute energy minimum with the impurity at the BC site.

At this point, it is interesting to compare the correlation betweend(Si–Si) and the
average distance from the impurity to the bond axis. This is shown in figure 9, where
one sees that the mean distance〈ρ〉 to the axis goes up as the Si–Si distance decreases
(impurity mass,mI , decreases). The open squares are results of our PIMC simulations for
the different hydrogen-like impurities studied here. In order to compare these results with
those corresponding to a QHA, we proceed as follows. The mean distance〈ρ〉 is given by

〈ρ〉2 = πh̄

4mω⊥
coth

(
h̄ω⊥
2kBT

)
(12)

with ω⊥ = (k⊥/mI)
1/2, and k⊥ is obtained as a function of the Si–Si distance via the

equationk⊥ = 13.84d(Si–Si) – 37.30 (k⊥ in eV Å−2, d(Si–Si) in Å, as found in a linear
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fit to the force-constant change as a function ofd(Si–Si), for our parametrized potential).
Finally, the relationship betweenmI and d(Si–Si) is given by the dashed line in figure 5.
As a result, we obtain for this QHA the continuous line shown in figure 9. As expected
from the comments above, the PIMC simulations give for the quantum impurities values of
〈ρ〉 larger than the QHA values, in particular for Mu∗.

For muonium, at temperatures higher than 100 K, our potential does not confine the
impurity around a BC site. Instead, we find a different configuration for the defect, which
is comparable to that of normal muonium (the so-called Mu centre) [11, 12]. In this
case, muonium is highly delocalized around the interstitial tetrahedral T site, and this
delocalization makes the kinetic energy of the impurity at 50 K decrease from 0.44 eV
for Mu∗ to 0.11 eV for Mu [14].

Note that our analysis is restricted to impurities confined around the BC site. At
temperatures higher than 400 K, impurity diffusion will be important, and the hydrogen-like
species will have a non-negligible probability of occupying other interstitial sites, as shown
in previous molecular dynamics simulations [15, 16, 17]. Also, at low temperatures, it is
possible that hydrogen hops from BC site to BC site due to thermally assisted tunnelling,
as shown by Cheng and Stavola for the boron–hydrogen complex in silicon [31]. Although
PIMC simulations such as those employed here do not allow us to analyse directly the
possibility of impurity tunnelling between adjacent BC sites, Monte Carlo simulations based
on the quantum transition-state theory [19, 32, 33] are a promising technique to obtain insight
into this interesting point in the near future.

5. Conclusions

Path-integral Monte Carlo simulations give valuable information on point defects in
semiconductors. In particular, for light impurities, one can study the effect of anharmon-
icities in the interaction potential on the kinetic and potential energy of the defect. These
effects are especially important for muonium, for which the defect energy changes by more
than 10% with respect to a one-particle harmonic approximation. The energy of lattice
relaxation also changes appreciably with the impurity mass, and is more than 0.1 eV higher
for bond-centred H than for the Mu∗ centre.
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